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There is currently intense interest in the synthesis and reactivity
of monoligand rare-earth dihydride complexes, “LLnH,”,*~* as they
adopt structures that feature fascinating and varied cluster frame-
works and mediate reaction chemistry that can be exquisitely
different from their long-known bisligand rare-earth monohydride
relatives, L,LnH.®

Pioneering work in this area was carried out by Hou and co-
workers, who showed that, depending on steric bulk of the
substituted cyclopentadienyl ligands, tetranuclear, [(CsMe,Si-
Mes)LnH]4(THF)o—2, or hexanuclear, [(CsMes)LnH,]s,* polyhy-
drido clusters can be obtained. These workers also showed that
the tetranuclear octahydrides exhibit unprecedented reactivity
toward a variety of unsaturated small molecules,® most recently
carbon monoxide.” Subsequent to this work, we reported that
Trofimenko’s scorpionates® are suitable ancillaries for the synthesis
of a wide range of rare-earth dialkyls, (TpRR)LnRy(THF)y/1, some
of which, under suitable conditions, can be converted to the
corresponding dihydrides, whose nuclearity depends on the steric
bulk of the scorpionate ligand. Thus, a series of tetranuclear,
[(TpMe)LnH,]4, and hexanuclear, [(Tp)LnH,]s, polyhydrides were
obtained.?

Although they are structurally interesting, the scorpionate-
supported polyhydrides exhibited limited reactivity. In an effort to
reduce the nuclearity and hence increase the reactivity, hydro-
genolysis of the superbulky (Tp®“Mé)Ln(CH,SiMes), complexes
was investigated. The reaction proceeded by elimination of tet-
ramethylsilane but gave a complex mixture of products, presumably
from metalation of one of the methyl groups of the tBu substituent
of the Tp®“Me ligand; the methyl C—H bond, pointing toward the
electron-deficient metal center, is poised for such a metalation
reaction. To eliminate the problem-causing methyl group while
maintaining the needed steric bulk, we turned our attention to the
hydrotris(3,5-diisopropyl-1-pyrazolyl)borate ligand, Tp'". Indeed,
this ligand system has similar steric bulk as Tp®“M¢ put presents
to the metal an interior like that in the TpMe ligand,®*° the ligand
that gave the tetranuclear octahydrides.> Here we report that this
approach led to the exclusive formation of trinuclear [(Tp™2)LnH,];
complexes and subsequent hydrogenation of carbon monoxide with
selective formation of propene.

Protonolysis of Ln(CH;SiMes)s(THF), (Ln =Y, Lu) with HTp/™"2
furnished the corresponding (Tp"P2)Ln(CH,SiMes),(THF) complexes
in high yield (eq 1):

Ln(CH2SiMeg)3(THF)2 + HTp™? % (TPP2)n(CH,SiMes)o(THF) + SiMes (1)
' Ln=Y (1a), 89%; Lu (1b), 84%

The compounds were characterized by the usual spectroscopic and
elemental analyses, and the structures in the solid state were
determined by single-crystal X-ray diffraction. The compounds, like
their (Tp®“Me)Ln(CH,SiMes), relatives, are highly soluble in
hydrocarbon solvents, but unlike them, they contain a coordinated
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THF ligand. This feature is in agreement with the observation that
the interior of the ligand resembles that of TpMe,

Figure 1. ORTEP plot of (Tp™2)Y(CH,SiMes),(THF) (1a) with thermal
ellipsoids drawn at the 20% probability level.

As is typical in other complexes with Tp™2 ligands,®*° the C—H
bonds of the Tp-isopropyl groups in 1a point toward the B and Y
atoms (Figure 1), thus leaving enough interior room for the THF
molecule to coordinate to the yttrium center, just as in the analogous
complex (TpMe2)Y(CH,SiMes),(THF). Indeed, the bond distances
in1a[Y—0 = 2.397(2) A, Y—Nae = 2.463(2) A, and Y—C,c =
2.415(2) A] are similar to those in the TpMe2 complex.?

To our delight, hydrogenolysis of the dialkyl complexes pro-
ceeded well and after simple workup gave the corresponding
dihydrides in very good yield (eq 2):

H» (75 atm), Pentane
e .

TP Ln(CH,SiMes)(THF
(Tp"")Ln(CHzSiMeg)2(THF) it 18~27h

(TPTLnHols + SiMe, (2)
Ln =Y (2a), 86%; Lu (2b), 81%

The dihydrides are soluble and stable in hydrocarbon, aromatic,
and ether-type solvents under an inert atmosphere. The *H NMR
spectra show the hydride signals at 7.62 and 11.27 ppm for the Y
(2a) and Lu (2b) complexes, respectively. The quartet appearance
of the former signal (*Jv_ = 15.6 Hz) and its temperature-invariant
nature down to —80 °C indicate coupling of the hydrides to three
equivalent yttrium atoms as a result of very rapid hydrogen
exchange and suggest a trinuclear cluster structure. The hydride
chemical shifts in 2a and 2b are at slightly higher field than in the
analogous complex [(TpMe2)LnH,]4 (Y, 8.22 ppm; Lu, 12.19 ppm),
and as expected, the average 1Jy_y is larger than the one observed
in [(TpM&2)YH,], (12.1 Hz).

The trinuclear cluster structure was corroborated by single-crystal
X-ray diffraction (Figure 2). Each Y is bonded to a «*-Tp'™"2 ligand,
and the Y atoms are bridged by hydrides, which were found and
isotropically refined.

There are two different types of bridging hydrides: one hydride
is triply bridging («s-H3) and located above the Y triangular plane,
and the remaining five hydrides are doubly bridging («.-H) and
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Figure 2. ORTEP plot of [(Tp"2)YH,]; (2a) with thermal ellipsoids drawn
at the 20% probability level.

bridge two yttrium atoms. The Y2-+-Y3 distance of 3.6841(3) A,
supported by the u3-H3 and u,-H4 bridges, is significantly longer
than the Y1+++Y2 and Y1---Y3 distances (average 3.3601(3) A),
which are bridged by the same u3-H3 but two u,-H bridges. Thus,
the three yttrium atoms form a slightly distorted isosceles triangle.
As such, the structure is subtly different from that of
[Y(MesTACD)H,]s, in which all six hydrides are u,-H bridges.>**

The reaction with CO was chosen as a test case to investigate
the reactivity differences between the trinuclear hexahydrides 2 and
the tetranuclear octahydrides reported by Hou et al.” and us.?
Stirring a pentane solution of the yttrium hydride, 2a, under an
atmosphere of *3CO for 2 days resulted in clean conversion of 2a
into a pale-yellow crystalline solid, 3a (Scheme 1).

Scheme 1. Reaction of 2a with *3C-Enriched Carbon Monoxide
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The C{*H} NMR spectrum of 3a revealed a three-**C unit by
prominent resonances at 67.36 (d, Jc—c = 46 Hz), 109.08 (d, Jc—¢
=70 Hz), and 141.25 (dd, Jc—c = 70, 46 Hz) ppm; these appeared
in the *H-coupled spectrum as “td” (—CH,—), “td” (=CH,), and
“ddd™ (—CH=), respectively, due to Jc_y and Je—c coupling,
accounting for five of the original six hydrogens. The sixth hydrogen
was seen as a signal of intensity 1 in the *H NMR spectrum at
7.35 (dd, 1H, Jy_n = 38.4, 33.2 Hz) ppm. The nature of the three-
13C unit in 3a was established by X-ray crystallography as a cluster-
bound propenolate fragment resulting from hydrogenation and
coupling of three carbon monoxides (Figure 3).***® Heating a
tolune-ds solution of 3a overnight released **C-propene (**CsHg),
as verified by its **C NMR signatures (chemical shifts and Jc_y
and Je_c values).*

Preliminary 3C NMR monitoring of the reaction and short
reaction time at low temperature revealed that 3a already forms at
—50 °C, but attempts to clearly identify or isolate further intermedi-
ates have to date been hampered by the overlapping natures of the
reaction steps. Work to fully map out the mechanism that leads to
the formation of 3a is continuing.*®

In summary, the use of the Tp™ ligand led to the straightforward
and high-yield synthesis of rare examples of trinuclear monoligand

Figure 3. ORTEP plot of the core structure of 3a with thermal ellipsoids
drawn at the 20% probability level. Except for the bridging hydride, the
B—H moieties, and the propenolate group, all of the other H and C atoms
have been omitted for clarity. Selected bond distances (A): Y1—H, 2.20(3);
Y2—H, 2.22(3); Y2—01, 2.221(2); Y3—01, 2.308(2); Y1—-02, 2.233(2);
Y2—-02, 2.127(2); Y3—02, 2.2678(19); Y1—03, 2.054(2); Y3—03,
2.048(2); 0O1—C1, 1.418(4); C1—C2, 1.509(6); C2—C3, 1.290(7)

lanthanide dihydrides, [(Tp"P2)LnH,]; (Ln =Y, Lu). The Y complex
was found to mediate the hydrogenation and coupling of carbon
monoxide with exclusive formation of propene. The reactions of
the dihydrides with small, unsaturated substrates are under
investigation.
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